Special Conditions of Contract

1. Pre - Construction, Inspection and testing and review of data for material, plant and equipment

- The contractor shall place order for the material and equipment only after approval of Engineer In Charge. The contractor shall submit the detailed drawings to the Engineer In Charge for approval.
- The contractor shall inform the Engineer In Charge about the likely dates of manufacture, testing and dispatching of the material. The contractor shall notify the Engineer In Charge for inspection and testing, at least twenty eight (28) days prior to packing and shipping and shall supply the manufacturers test results and quality control certificate.
- The inspection and test categories shall be applied prior to delivery of the equipment of various categories as indicated in the technical specifications for each type of equipment.

Category A: The drawing/data sheet has to be approved by the Engineer In Charge before manufacture and testing. The material has to be inspected by inspecting agency at the manufacturers premise before packing and dispatching.

Category B: The drawings of the equipment have to be submitted and to be approved by the Engineer In Charge prior to manufacture. The material has to be tested by the manufacture and the manufacturers test certificate are to be submitted and approved by the Engineer In Charge before dispatching of the equipment. Notwithstanding the above, the Engineer In Charge after examination of the test certificates, reserves the right to instruct the contractor for testing, if required, in the presence of the contractors representative.

Category C: The material may be manufactured as per standards and deliver to the site.

- For material/equipment under Category 'A' and 'B' the Engineer In Charges will provide an authorization for packing and shipping after inspection.
- The testing, approval for dispatching shall not absolve the contractors obligations for satisfactory performance of the plant.

Inspection Category

- 4	e.	h		7
_1	Δ.	h	2	

S.No.	Items	Category
1.	Cast Iron specials	В
2	DI pipes, HDPE pipes, Centrifugal pump sets for CWR and pump sets for tubewell with cable.	Α
3	Suice Valves, Reflux valves, Air Valves, Water Meter, Bulk Meter and Pressure sensor, Magnetic Water Meter	В
4	C.I. Joints and rubber rings for joints & couplers	В

1.1 Third Party Inspection :

Testing of the material shall be done by Third Party/As per direction of Engineer-In-Charge. In case of Third Party inspection the contractor is to contact for third party inspection amongst the CEIL, SGS, RITES on his own. He shall deposit & bear the cost of inspection. The contractor should inform the JDA of the name of agency finalized by him for the contract. The agency finalized by him for the contract. The agency will be same for all items of supply in this contract requiring 3rd party inspection.

The manufacturer should be required to call for inspection to the agency under instructions of the Contractor and Engineer In Charge. The Engineer in Charge may depute a representative to witness the inspection. The inspection agency should furnish copies of Inspection Certificate to the manufacturer, Contactor and to the Engineer In Charge directly. All material as per above Table-1 should be tested and found satisfactory as per specifications shall be marked distinctly.

1.2 Cost for Inspection

The cost of inspection shall be borne by the contractor.

1.3 Approval of Material and Equipment

The fact that the Contractor has agreed to provide the material prescribed in the Tender Documents does not release him to ask for the final approval of the equipment and material to be used for the Work. The specifications and drawings of each item to be supplied shall be individually scrutinized and its conformity with the technical specifications and the standards shall be verified by the Engineer In Charge.

Prior to ordering any material and equipment such as pipes, specials, measuring equipment's, mechanical and Electro-mechanical equipment, electrical equipment, material for civil works and interior decoration, paints, etc. the Contractor has to supply the detailed specification, drawings, performance curves and data, operation instructions etc., to the Engineer In Charge. If the Contractor has any doubts about the required specifications as prescribed in the Contract, he has to clarify them with the Engineer In Charge.

The procedure for the submission of documents, verification, re-submission if necessary and approval of

these items is the same as that for the drawings, described in clause 2.3. If equipment or material which the Contractor submitted first is refused in the approval process he has to submit documents of equipment which corresponds to the specifications of the Tender Documents and which is likely to be approved.

Only after approval of the material and equipment, the Contractor can place the order or start the manufacturing or purchasing procedures.

Four weeks prior to packing and shipping the Contractor must inform the Engineer In Charge when the material/equipment is ready for inspection and testing. At this date, the Contractor shall supply the results of all manufacturer's own tests made during or after manufacturing and his own quality control certificates. The Engineer In Charge will decide whether he or his representative will inspect and test the material/equipment or whether he will approve it on the basis of the supplied documentation.

Inspection of bought out items defined under Category 'A' shall done by third party selected by the JDA. The Engineer In Charge will provide an authorization for packing and shipment after inspection and/or approval of the material/equipment.

If the Contractor packs and ships material/ equipment without approval or authorization of the Engineer In Charge-in-Charge, it can be refused if it is not matching with the specifications of the Contract. All costs resulting from this are to be borne by the Contractor. The Contractor has then to provide the material/ equipment, which is matching with the Contract.

2 Cost of water and electricity for testing

Water and electricity for construction and testing of all structures and all other purpose shall be arranged by the contractor at his own cost.

3 Documents Required For Payment:

The contractor shall submit the following documents in duplicate along with the invoice/bill.

- (i) Invoice indicating details of equipment's, material manufactured, supplied and installed or work carried out, supply value of such material or equipment or value of such work carried out and amount claimed.
- (ii) Inspection reports/ test reports/ reports certifying completion of activity with acceptable results.
- (iii) Report/certificate of inspections /tests carried out by the supplier of the contractor or by the contractor himself.
- (iv) Any other such details/documents as may be reasonably specified by the Engineer In Charge-in-Charge from time to time during execution of the contract.
- (v) Certificates, as prescribed, regarding payment of Sales Tax, duties etc. legible on supplies made.
- (vi) Other documents required by the Engineer In Charge-in-charge.
- 4 Payment Terms
- 4.1 Breakup of payment for Supply laying jointing, installation and testing of DI/GI pipe line and specials, installation of sluice valve, Air Valves and dismantling joints.

1	After Supply laying jointing, installation and	80 % payment on providing lowering in trenches,
	testing of DI/GI/HDPE pipe line and specials,	laying installation and jointing etc. complete.
	installation of sluice valve, Air Valves and	Remaining 20 % after satisfactory testing
	dismantling joints.	

- 5. Contractor shall get the material inspected from the Third Party (CEIL, SGS, RITES)/As per direction of Engineer-In-Charge before bringing the material at site. The inspection charges shall be borne by the contractor. No payment of these items shall be made before the third party inspection. However decision of EIC shall be final regarding payment of these items.
- In case of pipe line testing shall be done as per the relevant Code and the leakage level shall not be more than as per IS 8329.
- 7. The JDA shall be free to carry out the work from any participating agency on the rate of lowest bidder during the concurrency of rate contract.
- **8.** Excise Duty Exemption on DI pipe line shall be applicable as per rules and bidder has to consider this while quoting the rates.
- **9.** The contractor shall submit the proof of ownership of suitable machinery for laying of pipeline in all type of strata.
- **10.** The quantity of work can be increased or decreased. However, no guarantee is given about the actual quantity of work.
- 11. No extra payment shall be made to the contractor on account of excavation in collapsible strata or in hard or rocky strata. The tenderers shall have to make their own arrangement for completing the work and no claim in this respect will entertained.

- On collection of complete material for each section the same shall be got checked by Engineer—in—Charge or his authorized representative. Such approval shall in no way release the contractor of his responsibility regarding completion of work, as per required specification until the contract is complete.
- 13. The electric connection, if required, for construction and testing purpose shall be arranged by the contractor at his own cost.
- The contractor shall make his own arrangement regarding water required for the execution and testing of the work and shall also arrange for the supply of drinking water to his own employees. He shall defray all charges in this connection and should include in his rates a sufficient amount to cover such charges. All such facilities as are required now to be provided for the labour, made under abour welfare rules inforce, shall also be provided by the contractor at his own cost.
- 15. Water for construction / testing purpose shall have to arrange by contractor at his own cost.
- The contractor shall be fully responsible for structural safety and water tightness of pipeline as well as ESR and CWR when tested.
- 17. No secured advance against material procured at site will be allowed.
- Pipeline laying should be done in the presence an Engineer not below the rank of Junior Engineer of the JDA, and trench shall be refilled after checking of Assistant engineer. After taking layout, the contractor shall submit day to day schedule of work to the Engineer—in- charge in advance.
- The contractor/firm or company will take utmost care to safeguard the water mains, Electric and Telephone cable existing surface drains water connections etc., while executing the work. Any damages/rectification shall be borne by the contractor only.
- 20. The contractor shall, at his own cost, arrange to provide, erect and maintain necessary display boards/ flags/banners etc. at selection points of project site giving such information as considered necessary for public awareness/ information/ safety as directed by the Engineer-in-charge.
- 21. Contractor shall provide sufficient number of boards at site of work indicating "JDA AT WORK" at his own cost as required by Engineer-in-charge.
- The surplus earth and damaged materials will be immediately removed from the site of work and dumped as per instruction of Engineer-in-charge.
- 23. The material collected at site and paid provisionally shall remain under the watch and ward of the contractor till it is consumed fully on the work.
- Any material not conforming to the specifications collected at site shall have to be removed by the contractor within a period of 3 days of the instructions, issued by the Engineer-in-charge, failing which, such material shall be removed by the Engineer-in-charge at risk and the contractor after expiry of 3 days period.
- 25. The contractor/firm/company is bound to get the workmen insured against accident from the Insurance Company at his own cost.
- 26. Contractor shall be the sole custodian of the men and material at work and will be fully responsible for any loss of life or otherwise occurred during the execution of the works.
- 27. If there is any typographical error or otherwise in the 'G' Schedule. The nomenclature and the rates as given in the relevant BSR and JDA approved items/rates on which schedule 'G' is based, shall prevail.
- 28. According to the alignment of pipe line thrust blocks shall be constructed as per IS code for which no extra payment shall be payable. The cost of thrust blocks shall be deemed to be considered in the rates quoted by bidder.
- 29. Cement concrete roads required to be dismantled for laying of pipe line shall be done by mechanical means / breaker in the manner such that pavement in required width is only dismantled. No extra payment for cutting of payment shall be made and it shall be deemed to be considered in the rates quoted by bidder.
- 30. On collection of complete material for each section the same shall be got checked by Engineer—in—Charge or his authorized representative. Such approval shall in no way release the contractor of his responsibility regarding completion of work, as per required specification until the contract is complete.
- The contractor shall be solely responsible for all kind of liaison before starting the work with PHED/Other JDA zone/JVVNL & BSNL etc. which is required to avoid any damage of already laid pipe lines, Electric, BSNL cables. The contractor shall also liaison for the inter connection work with existing PHED system.
- 32. Before start of work contractor has to inform concerned JDA zone officers to avoid/minimize road damage.

Safety aspects associated with the work.

33. Safety And Accident Prevention Officer: Due precautions shall be taken by the Contractor, at his own dost, to ensure the safety and protection against accidents of all staff and Labour engaged on the works, local residents in the vicinity of the works, and the public traveling through the works.

The contractor shall deploy at least one officer from his staff, qualified to promote and maintain safe working practices. This/these officer(s) shall has/have authority to issue instructions and shall take protective measures to prevent accidents, including but not limited to the establishment of safe working practices and the training of staff and labor in their implementation. The contractor shall furnish to the department the name(s) of such officer(s) before the start of the work.

- 34. The contractor/firm or company while executing the work will adopt all safety measures at his cost to safeguard from any loss of life and damage of public and private property. If any loss and damage is occurred, they will pay the full compensation from their own pocket to the concern. All the consequence (legal and or financial) will be borne by the contractor only and JDA will not be responsible in any way.
- 35. The contractor/firm or company will take utmost care to safeguard the water mains, Electric and Telephone cable existing surface drains water connections etc., while executing the work. Any damages/rectification shall be borne by the contractor only.
- **36.** Electric and water connections, if needed, shall be arranged by the contractor himself at his own cost.
- 37. Contractor shall be the sole custodian of the men and material at work and will be fully responsible for any loss of life or otherwise occurred during the execution of the works JDA and its representatives will not be responsible in anyway.

38. Demolishing of concrete road work will be done by mechanical means in the proper way.

The above conditions may be read very carefully and adhered strictly.

Executive Engineer (Garden-I)

I/we confirm above

Signature of contractor

Specifications of D.I. Pipe line work

SUPPLY OF DI PIPES, SPECIALS, VALVES AND LAYING OF PIPES FOR WATER SUPPLY

General

Standards

Except as other vise specified in this technical specification, the Indian/International Standards and Codes of Practice in their latest version shall be adhered to for the design, manufacturing, inspection, factory testing, packing, handling and transportation of product. Should any product be offered conforming to other standards, the equipment or products shall be equal to or superior to those specified and the documentary confirmation shall be submitted for the prior approval of the Engineer in Charge.

This specification requires a reference to the following standard specifications

This specification	on requires a reference to the following standard specifications
IS: 4985	Unplasticized PVC pipes for potable water supplies
IS: 10151	PVC and its copolymers for its safe use in contact with foodstuffs, pharmaceuticals, and
10. 10101	drinking water
IS: 10500	Drinking water specification
	Methods of test for unplasticized PVC pipes for potable water supplies
IS: 12235	Methods of test for PVC resin
IS: 4669	Unplasticized PVC screen and casing pipes for bore/tube well
IS: 12818	Unplasticized PVC Screen and casing pipes of botenable wen
IS: 3400	Methods of test for vulcanized rubber (part-1 to 22)
IS: 1387	General requirements for the supply of metallurgical material
IS: 210	Grey iron casting
IS: 1536	Centrifugally cast (spun) iron pressure pipe for water, gas and sewage
IS: 1537	Vertically cast iron pressure pipe for water, gas and sewage
IS: 1538	Cast iron fittings for pressure pipes for water, gas and sewage
IS: 5531	CI specials for Asbestos cement pressure pipes for water gas & sewage
IS: 1363	Hexagon head bolts, screws and nuts of product grade A and B (part:1-5)
IS: 1367	Technical supply conditions for threaded steel fasteners
IS: 780	Sluice valve for water works purposes
IS: 2906	Specifications for sluice valves for water works purposes
IS: 318	Leaded tin bronze ingots and casting
IS: 8543	Methods of testing plastics: Determination of density of solid plastics
IS: 7181	Horizontally cast iron double flanged pipes for water, gas and sewage.
IS: 8794	CI detachable joints for use with Asbestos cement pressure pipes
IS: 5382	Rubber sealing rings for gas mains, water mains and sewers
IS: 5531	Cast iron specials for asbestos cement pressure pipes for water, gas and sewage
IS: 779	Water meters
IS: 3624	Pressure and vacuum gauges
1000,000,000,000,000	Black japan, types A, B and C
IS: 341	Ready mixed paint, brushing, bituminous, black, lead free, acid, alkali, water and chlorine
IS: 9862	
10. 4000	resisting
IS: 1239	Mild steel tubes, tubular and other wrought steel fittings
IS: 7328	High density polyethylene materials for moulding and extrusion
IS: 4984	Specification for high density polyethylene pipes for potable water supplies; sewage and industrial effluents
IS: 554	Dimensions for pipe threads where pressure tight joints are required on the threads
IS: 1592	Asbestos cement pressure pipes - Specifications
IS: 778	Specifications for copper alloy gate, globe and check valves for water works purposes
IS: 12820	Dimensional requirements for rubber gaskets for mechanical joints and push on joint for
	use with cast iron pies and fittings for carrying water, gas and sewage.
IS: 9523	Specification for DI fittings for pressure pipes for water, gas, and sewage.
ISO: 2045	Single socket for uPVC and uPVC pressure pipes with elastic sealing ring type joints -
	Minimum depth of engagement
ISO: 2507	PVC pipes and fittings- Vicat softening temperature - Test method and specification
ISO: 3603	Fittings for PVC pipe with elastic sealing ring joints pressure test for leak profanes
ISO: 1167	Thermoplastics pipes for the transport of fluids - Resistance to internal pressure - Test
100. 1107	method and basic specification
ISO 3451-5	Determination of Ash: Part-5 - Poly vinyl chloride
ASTM: D 2152	set to the total DVO
49 IN. D 215	Acetone immersion
MTNII	Mahanagar Telephone Nigam Limited; Technical specifications for cable ducts.
MTNL BS: 4772	Specification for DI fittings
BS: 4772	
IS: 7634- Paris	Code of practice for plastic pipe works for potable water supplies Centrifugally cast (spun) ductile iron pressure pipes for water, gas and sewage.
IS: 8329	Centinugany cast (spun) ductile non pressure pipes to mater, gas and semage.

Code of practice for use and laying of ductile iron pipes

CPHEEO Manual on Water Supply and Treatment, III edition, Ministry of Urban Development, New Delhi- May 1999.

The work consists of Providing, Laying & Jointing of 150 mm & 100 mm DI pipe line in approximately 1900.00 mtr length as per BOQ:

Ductile Iron Pipe:-

The pipes will be centrifugally cast (spun) Ductile Iron pipes for Water and Sewage confirming to the IS 8329: 2000. The pipes used will be either with push on joints (Rubber Gasket Joints) or Flanged joints. The class of pipe to be used shall be of the class K-7.

The pipes shall be coated with bitumen as per appendix C and have factory provided cement mortar lining in the inside as per the provisions of Appendix B of the IS 8329: 2000.

The pipes will be supplied in standard length of 5.50 and 6.00 meters length with suitably rounded or chamfered ends. Each pipe of the push on joint variety will also be supplied with a rubber EPDM gasket. Any change in the stipulated lengths will be approved by the Engineer – in charge. The gaskets will confirm to the IS 5382:1985.

The gaskets should also be supplied by the manufacturer of the pipes. They should preferably be manufactured by the manufacturer of the pipes. In case they are not, it will be the responsibility of the manufacturer of the pipes to have them manufactured from a suitable manufacturer under it's own supervision and have it tested at his/sub contractors premises as per the contract. The pipe manufacturer will however be responsible for the compatibility and quality of the products.

The flanged joints will confirm to the Clause 6.2 of IS 8329. The pipe supply will also include one rubber gaskets for each flange.

Inspection and Testing:

The pipes will be subjected to following tests for acceptance:

Visual and dimensional check as per Clause 13 and 15 of IS 8329

Mechanical Test as per Clause 10 of IS 8329

Hydrostatic Test as per Clause 11 of IS 8329

The test reports for the rubber gaskets shall be as per acceptance tests of the IS 5832 and will be in accordance to Clause 3.8

The sampling shall be as per the provisions of the IS 8329

Marking

All pipes will be marked as per Clause 18 of IS 8329 and show as below:

Manufacturer name/ stamp

Nominal diameter

Class reference

A white ring line showing length of insertion at spigot end

Packing and Transport:

The pipes should be preferably transported by road from the factory and stored as per the manufacturer specifications to protect damage.

Specials for Ductile Iron Pipes

General

This section covers the general requirements for Ductile Iron (DI) fittings suitable for Tyton joints to be used with Ductile Iron pipes with flanged and Tyton jointing system.

Types of specials

The following types of DI fittings shall be manufactured and tested in accordance with IS: 9523 or BS: 4772. flanged socket

flanged spigot

Double socket bends (900, 450, 22 1/2 0, 11 1/4 0)

Double socket branch flanged tee

All socket tee.

Double socket taper.

All Flanged Tee.

All Flanged taper.

Supply

All the DI fittings shall be supplied with one rubber ring for each socket. The rubber ring shall conform to IS: 12820 and IS: 5382 as described in the preceding chapter. Flanged fittings shall be supplied with one rubber gasket per flange and the required number of nuts and bolts.

General

This section covers the requirements for lubricant for the assembly of Ductile Iron pipes and specials suitable for Tyton push-in rubber ring joints

Specification

The lubricant has to have the following characteristics:

must have a paste like consistency and be ready for use

has to adhere to wet and dry surfaces of DI pipes and rubber rings

to be applied in hot and cold weather; ambient temperature 0 - 50 °C, temperature of exposed pipes up to 70 °C

must be non toxic

must be water-soluble

must not affect the properties of the drinking water carried in the pipes

must not have an objectionable odour has to inhibit bacterial growth must not be harmful to the skin must have a shelf live not less than 2 years

Acceptance tests

They shall be conducted in line with the provisions of the IS 9523

All the DI fittings shall be properly packed with jute cloth. Rubber rings shall be packed in polyethylene bags. Rubber rings in PE bags and nuts, bolts etc. shall be supplied in separate jute bags.

The fittings should also be supplied by the manufacturer of the pipes. They should preferably be manufactured by the manufacturer of the pipes. In case they are not, it will be the responsibility of the manufacturer of the pipes to have them manufactured from a suitable manufacturer under it's own supervision and have it tested at his/sub contractors premises as per the contract. The pipe manufacturer will however be responsible for the compatibility and quality of the products.

Laying and jointing of DI pipes

Pipes should be lowered into the trench with tackle suitable for the weight of pipes. For smaller sizes, up to 200 mm nominal bore, the pipe may be lowered by the use of ropes but for heavier pipes suitable mechanical equipment have to be used.

All construction bebris should be cleared from the inside of the pipe either before or just after a joint is made. This is done by passing a pull-through in the pipe, or by hand, depending on the size of the pipe. All persons should vacate any section of trench into which the pipe is being lowered

On gradients of 1:15 or steeper, precautions should be taken to ensure that the spigot of the pipe being laid does not move into or out of the socket of the laid pipe during the jointing operations. As soon as the joint assembly has been completed, the dipe should be held firmly in position while the trench is back filled over the barrel of the pipe.

The designed anchorage shall be provided to resist the thrusts developed by internal pressure at bends, tees, etc.

Where a pipeline crosses a watercourse, the design and method of construction should take into account the characteristics of the watercourse to ascertain the nature of bed, scour levels, maximum velocities, high flood levels, seasonal variation, etc. which affect the design and laying of pipeline.

The assembly of the pipes shall be made as recommended by the pipe manufacturer and using the suitable tools.

The socket and spigot ends of the pipes shall be brushed and cleaned. The chamfered surface and the end of the spigot end have to be coated with a suitable lubricant recommended by the manufacturer of the pipes. Oil, petroleum bound oils, grease or other material which may damage the rubber gasket shall not be used as lubricant. The rubber gasket shall be inserted into the cleaned groove of the socket. It has to be checked for correct positioning.

The two pipes shall be aligned properly in the pipe trench and the spigot end shall be pushed axially into the socket either manually or with a suitable tool specially designed for the assembly of pipes and as recommended by the manufacturer. The spigot has to be inserted up to the insertion mark on the pipe spigot. After insertion, the correct position of the speket has to be tested with a feeler blade

Deflection of the pipes -if any- shall be made only after they have fully been assembled. The deflection shall not exceed 75 % of the values indicated by the pipe manufacturer.

Anchoring of the pipeline

Thrust blocks shall be provided at each bend, tee, taper, end piece to prevent undue movements of the pipeline under pressure. They shall be constructed as per design of ENGINEER- IN- CHARGE according to the highest pressure during operation or testing of the pipes, the safe bearing pressure of the surrounding soil and the friction coefficient of the soil.

Leakage Test

After laying and jointing the pipeline shall be tested for tightness of barrels and joints, and stability of thrust blocks in sections approved by the Engineer in Charge. The length of the sections depends on the topographical conditions. Preferably the dipeline stretches to be tested shall be between two chambers (air valve, scour valve, bifurcation, other chamber). At the beginning, the Contractor shall test stretches not exceeding 2 km. After successful organization and execution of tests the length may be extended to more than 2 km after approval of the Engineer in Charge.

The water required for testing shall be arranged by the contractor himself. The Contractor shall fill the pipe and compensate the leakage during testing. The Contractor shall provide and maintain all requisite facilities, instruments, etc. for the field testing of the pipelines. The testing of the pipelines generally consists in three phases: preparation, pre-test/saturation and test immediately following the pre-test. Generally, the following steps are required which shall be monitored and recorded in a test protocol if required

The testing conditions for the pipelines are summarized as follows:

Maximum hydrostatic test pressure for DI K-7 pipes shall be 2.0 times of maximum design pressure in the pipeline. Pre test and saturation period with addition of make-up water

Pressure:

Test pressure

Duration:

3 hrs for DI pipes without cement mortar lining / 24 hrs for DI pipes with

cement mortar lining

Pressure test with addition of make-up water

Pressure: Duration:

Test pressure 3 hrs

Test criteria for DI pipes:

Q = 1 liter per km per 10mm of pipe per 30 m test pressure per 24 hrs.

All pressure testing at site should be carried out hydrostatically. The pipes shall be accepted to have passed the pressure test satisfactorily, if the quantity of water required to restore the test pressure as per the latest codal provisions does not exceed the amount 'Q', calculated by the above formula.

If it is required to test a section of a pipeline with a free end, it is necessary to provide temporary support against the considerable end thrust developed by the application of the test pressure. The end support can be provided by inserting a wooden beam or similar strong material in a short trench excavated at right angle to the main trench and inserting suitable packing between the support and pipe end.

The pipeline stretch will pass the test if the water added during the test period is not exceeding the admissible limits. No section of the pipe work shall be accepted by the Engineer in charge until all requirements of the test have been obtained.

On completion of a satisfactory test any temporary anchor blocks shall be broken out and stop ends removed. Backfilling of the pipeline shall be completed.

Failure to pass the test

All pipes or joints which are proved to be in any way defective shall be replaced or remade and re-tested as often as may be necessary until a satisfactory test shall have been obtained. Any work, which fails or is proved by test to the unsatisfactory in any way, shall be redone by the Contractor.

Flushing and disinfecting of pipelines

After testing and commissioning the contractor shall flush the pipes with a velocity not less than 1 m/s or as approved by the Engineer in Charge. Disinfection of drinking water pipelines shall be made by engineer- in charge.

Supply of Ductile Iron Pipes:-

The Contractor will have to supply DI pipes manufactured by manufacturer who has been in business of supply of DI pipes rubber ring jointed and have proven record of successful supply and testing of pipeline for minimum one year.

Specifications for Laying and Jointing of Pipe Line System for

Water Supply

Preparatory work

The contractor will inspect the route along which the pipe line is proposed to be laid. He should observe/ find out the existing underground utilities/ construction and propose an alignment along which the pipeline is to be laid. He should make all efforts to keep the pipe as straight as possible with the help of ranging rods. Wherever there is need for deviation, it should be done with the use of necessary specials or by deflection in pipe joints (limited to 75% of permissible deflection as per manufacturer). The alignment as proposed should be marked on ground with a line of white chalk and got approved from Engineer In-Charge. The Contractor will than prepare an L-Section along this alignment showing the location of proposed pipeline. The L-section should be got approved from the site Engineer. The position of fittings, valves, should be shown on the plan.

Alignment and the L-Sections

The alignments, L-section (depth of laying) and location of specials, valves and chambers may be changed at site in co-operation with and after approval of the Engineer in Charge. The minimum cover to the top of the pipe shall be 1 m.

Standards

Except as otherwise specified in this technical specification, the Indian Standards and Codes of Practice in their latest version, National Building code, PWD specification of the state of Rajasthan and Manual of water supply of GOI shall be adhered to for the supply, handling, laying, installation, and site testing of all material and works.

Tools and equipment

The contractor has to provide all the tools and equipment required for the timely, efficient and professional implementation of the work as specified in the various sections of the contract and as specified by the instructions of manufacturers of the pipes and other material to be handled under this contract. On demand he shall provide to the Engineer in Charge a detailed list of tools and equipment available. If in the opinion of the Engineer in Charge the progress or the quality of the work cannot be guaranteed by the available quantity and type of tools and equipment the contractor has to provide additional ones to the satisfaction of the Engineer in Charge. The Contractor will always have a leveling instrument on site.

Handling and laying of pipes

Transportation of pipes and specials & Storage:-

The Contractor has to transport the pipes and other materials from manufacturer to the site of laying as indicated by the Engineer in Charge. Pipes should be handled with care to avoid damage to the surface and the socket and spigot ends, deformation or bending. Pipes shall not be dragged along the ground or the loading bed of a vehicle. Pipes shall be transported on flat bed vehicles/trailers. The bed shall be smooth and free from any sharp objects. The pipes shall rests uniformly on the vehicle bed in their entire length during transportation. Pipes shall be loaded and un-loaded manually or by suitable mechanical means without causing any damage to the stacked pipes.

The transportation and handling of pipes shall be made as per IS 12288. Handling instructions of the manufacturers of the pipes shall be followed. All precautions set out shall be taken to prevent damage to the protective coating, damage of the jointing surfaces or the ends of the pipes.

Whatever method and means of transportation is used, it is essential that the pipes are carefully placed and firmly secured against uncontrolled movement during transportation to the satisfaction of engineer in charge.

Cranes or chain pulley block or other suitable handling and lifting equipment shall be used for loading and un-loading of heavy pipes. However, for pipes up to 400 mm nominal bore, skid timbers and ropes may be used. Where using crane hooks at sockets and spigot ends hooks shall be broad and protected by rubber or similar material, in order to avoid damage of pipe ends and lining. Damage to lining must be repaired before pipe laying according to the instructions of the pipe manufacturer. Pipes shall not be thrown directly on the ground or inside the trench.

When using mechanical handling equipment, it is necessary to employ sufficient personnel to carry out the operation efficiently with safety. The pipes should be lifted smoothly without any jerking motion and pipe movement should be controlled by the use of guide ropes in order to prevent damage caused by pipes bumping together or against surrounding objects.

Rolling or dragging pipes along the ground or over other pipes already stacked shall be avoided.

The pipe should be given adequate support at all times. Pipe should be stored on a reasonably flat surface free from stones and sharp projections so that the pipe is supported throughout its length. In storage, pipe racks should provide continuous support and sharp corners of metal racks should be avoided. Socket and Spigot pipes should be stacked in layer with sockets placed in alternate ends of the stack to avoid lop sided stacks.

Pipes should not be stored inside another pipe. On no account the pipes should be stored in stressed or bent condition or near the sources of heat. Pipes should not be stacked more than 1.5 m high and pipes of different sizes and classes should be stacked separately. The ends of the pipes should be protected from abrasion. The pipes should be protected from U.V. rays and excessive heat at all times. Their storage facility should be well ventilated.

The Contractor shall provide proper and adequate storage facilities to protect all the materials and equipment's against damage from any cause whatsoever and in case of any such damage/theft, the Contractor shall be held responsible.

The contractor will lay the pipelines along the alignments as per the layout given by the Engineer in Charge. The layout shall be given keeping in view the information available regarding existing services like water lines, sewers, telephone and electric lines/ cables. In the event some services fall in the alignment of lines to be laid, the contractor shall have to shift such services for which a provision has been made in the BOQ. The contractor shall take all due care to avoid damage to any such services and, in case of any damage occurring to them in progressing the work, the Contractor shall make good the same at his own cost. No additional time shall, however, be allowed on this account.

Stringing of pipes along the alignment

The pipes shall be laid out properly along the proposed alignment in a manner that they do not create any significant hindrance to the public and that they are not damaged.

Stringing of the pipe end to end along the working width should be done in such a manner that the least interference is caused in the land crossed. Gaps should be left at intervals to permit the passing of equipment across the working area. Pipes shall be laid out that they remain safe where placed and that no damage can occur to the pipes and the coating until ir corporated in the pipeline. If necessary, pipes shall be wedged to prevent accidental movement. Precautions shall be made to prevent excessive soil, mud etc. entering the pipe.

Generally, the pipes shall be laid within two weeks from the date of their dispatch from the manufacturer /store.

Pipe trench

Trench excavation

The trench excavation of pipeline shall be in accordance with IS 12288. Pipe trenches shall be excavated to the lines and levels shown on the drawings or as directed by the Engineer in Charge. The depth of the excavated trench shall be as given in the drawings or as directed by the Engineer in Charge. The width of the trench at bottom between the faces of sheeting shall be such as to provide 200 mm clearance on either side of the Diameter. No pipe shall be laid in a trench until the section of trench in which the pipe is to be laid has been approved by the Engineer in Charge.

The depth should be sufficient to provide a cover not less than 1000 mm. It may be necessary to increase the depth of pipeline to avoid land drains or in the vicinity of roads, railways or other crossings. Care should be taken to avoid the spoil bank causing an accumulation of rainwater.

The bottom of the trench shall be trimmed and leveled to permit even bedding of the pipes. It should be free from all extraneous matter, which may damage the pipe or the pipe coating. Additional excavation shall be made at the joints of the pipes, so that the pipe is supported along its entire length.

All excavated material shall be stacked in such a distance from the trench edge that it will not endanger the work or workmen and it will avoid obstructing footpaths, roads and driveways. Hydrants under pressure, surface boxes, fire or other utility controls shall be left unobstructed and accessible during the construction work. Gutters shall be kept clear or other satisfactory provisions made for street drainage, and natural watercourses shall not be obstructed.

To protect persons from injury and to avoid damage to property, adequate barricades, construction signs, torches, red lanterns and guards, as required, shall be placed and maintained during the progress of the work and until it is safe for traffic to use the roadways. All materials, piles equipment and pipes which may serve as obstruction to traffic shall be enclosed by fences or barricades and shall be protected by illuminating proper lights when the visibility is poor.

As far as possible, the pipe line shall be laid below existing services, like water and gas pipes, cables, cable ducts and drains but not below sewers, which are usually laid at greater depth. Where it is unavoidable, pipeline should be suitably protected. A minimum clearance of 150 mm shall be provided between the pipeline and such other services.

Trees, shrubbery fences, poles, and all other property and surface structures shall be protected. Tree roots shall be cut within a distance of 50 cm from pipe joints in order to prevent roots from entering them. Temporary support, adequate protection and maintenance of all underground and surface structures, drains, sewers and other obstructions encountered in the progress of the work shall be provided. The structures, which will be disturbed, shall be restored after completion of the work.

Where water forms or accumulates in any trench the Contractor shall maintain the trench free of water during pipe laying.

Wherever necessary to prevent caving, trench excavations in soils such as sand, gravel and sandy soil shall be adequately sheeted and braced. Where sheeting and bracing are used, the net trench width after sheeting shall not be less than that specified above. The sides of the excavation shall be adequately supported at all times and, except where described as permitted under the Contract, shall be not battered.

The Engineer in Charge in co-operation with the Contractor shall decide about the sheeting/ bracing of the trench according to the soil conditions in a particular stretch and taking into account the safety requirements of the Contractor's and Engineer- In- Charge's staff. Generally, safety measures against caving have to be provided for trenches with vertical walls if they are deeper than 2.0 m.

Trench excavation to commensurate with the laying progress

The work of trench excavation should be commensurate with laying and jointing of the pipeline. It should not be dug in advance for a length greater than 500 m ahead of work of laying and jointing of pipeline unless otherwise permitted by the Engineer in Charge. The Contractor has to ensure the following:

- · safety protections as mentioned above have to be incorporated in the work process
- · hindrances to the public have to be minimized
- the trench must not be eroded before the pipes are laid
- the trench must not be filled with water when the pipes are laid
- the trench must not be refilled before laying of the pipes

The bed for the laying of the pipes has to be prepared according to the L-Section immediately before laying of the pipes.

Bedding of the pipes

The trench bottom shall be even compact and smooth so as to provide a proper support for the pipe over its entire length, and shall be free from stones, lumps, roots and other hard objects that may injure the pipe or coating. Holes shall be dug in the trench bottom to accommodate sockets so as to ensure continuous contact between the trench and the entire pipe barrel between socket holes.

Laying and jointing of pipes

General

The pipes will be cleaned in the whole length with special care of the spigot and sockets on the inside/ outside to ensure that they are free from dirt and unwarranted projections. The whole of the pipes shall be placed in position singly and shall be laid true to profile and direction of slope indicated on longitudinal sections. The pipes shall be laid without deflection in a straight alignment between bends and between high and low points. Vertical and horizontal

deflections between individual pipes need the approval of the Engineer in Charge. In no case the deflection shall be more than 75 % of those recommended by the manufacturer.

Before pipes are jointed they shall be thoroughly cleaned of all earth lumps, stones, or any other objects that may have entered the interior of the pipes, particularly the spigot end and the socket including the groove for the rubber ring.

Pipes and the related specials shall be laid according to the instructions of the manufacturers and using the tools recommended by them.

Cutting of pipes shall be reduced to a minimum required to conform to the drawings. Cutting has to be made with suitable tools and according to the recommendations of the manufacturer. The spigot end has to be chamfered again at the same angle as the original chamfered end. Cutting shall be perpendicular to the Centre line of the pipe. In case of ductile iron pipes the cut and chamfered end shall be painted with two coats of epoxy paint. If there is no mark for the insertion depth on the spigot end of the (cut) pipe it shall be marked again according to the instructions of the manufacturer.

Before pipes are jointed they shall be thoroughly cleaned of all earth lumps, stones, or any other objects that may have entered the interior of the pipes, particularly the spigot end and the socket including the groove for the rubber ring. End caps are removed only just before laying and jointing

All specials like bends, tees etc. and appurtenances like sluice or butterfly valves etc. shall be laid in synchronization with the pipes. The Contractor has to ensure that the specials and accessories are ready in time to be installed together with the pipes.

At the end of each working day and whenever work is interrupted for any period of time, the free ends of laid pipes shall be protected against the entry of dirt or other foreign matter by means of approved plugs or end caps.

When pipe laying is not in progress, the open ends of installed pipe shall be closed by approved means to prevent entrance of trench water and dirt into the line.

No pipe shall be laid in wet trench conditions that preclude proper bedding, or when, in the opinion of the Engineer in Charge, the trench conditions or the weather are unsuitable for proper installation.

The pipeline laid should be absolutely straight unless planned otherwise. The accuracy of alignment should be tested before starting refilling with the help of stretching a string between two ends of the straight stretch of pipes to rectify possible small kinks in laying.

Special Cast Iron fittings and Accessories

Normally when pipeline is laid, a certain number of cast iron fittings such as tees, bends, reducers, etc., and special fittings such as air or sluice valves are required.

Laying of Fittings – All cast iron fittings shall be plain ended to suit the outside diameter of Asbestos cement pressure pipes and to the class and diameter of pipe manufactured. When using such cast iron fittings, they are jointed by cast iron detachable joints only. For cast iron specials having flanges, they are jointed in the pipeline with cast iron flange adaptors having one end flanged and the other plain ended.

Anchorages - It should particularly be noted that the cast iron joints do not hold pipe ends within it firmly. During working or test pressure, there will be tendency for the pipe ends or special ends to slip out of the joint, more so with the case of blank end cap used for closure of pipeline and all degree bends and tees. In order to keep them firmly in the pipeline, anchoring of these specials are necessary against the direction of thrust.

The anchorage shall consist of either concrete cast-in-situ or masonry built in cement mortar. The anchors shall be extended to the firm soil of the trench side. The shape of the anchors will depend on the kind of specials used. They shall be spread full width of trench and carried vertically by the side and over the special to about 15 cm. The bearing area on sides of the trench will be proportional to the thrust and to bearing capacity of the sides of the trench.

Back filling and tamping

The soil under the pipe and coupling shall be tamped in order to provide a firm and continuous support or the pipeline. Tamping shall be done either by tamping bars or by using water to consolidate the back fill material.

The initial back fill material used shall be free of large stones and dry lumps. In stony areas the material for initial back fill can be shave from the sides of the trenches. In bogs and marshes, the excavated material is usually little more than vegetable matter and this should not be used for bedding purposes. In such cases, gravel or crushed stone shall be hauled in.

The initial back fill shall be placed evenly in a layer of about 100 mm thick. This shall be properly Consolidated and this shall be continued till there is a cushion of at least 300 mm of cover over the pipe. If it is desired to observe the joint or coupling during the testing of mains they shall be left exposed.

Sufficient back fill shall be placed on the pipe to resist the movement due to pressure while testing.

Balance of the back fill need not be so carefully selected as the initial material. However, care shall be taken to avoid back filling with large stones, which might damage the pipe when spaded into the trench.

Pipes in trenches on a slope shall have extra attention to make certain that the newly placed back fill will not become a blind drain in effect because until back fill becomes completely consolidated, there is a tendency for ground or surface water to move along this looser soil resulting in a loss of support to the pipe. In such cases, the back fill should be tamped with extra care and the tamping continued in 100 mm layers right up to the ground level.

Anchoring of the pipeline

Thrust blocks shall be provided at each bend, tee, taper, end piece to prevent undue movements of the pipeline under pressure. They shall be constructed as per actual design and approval of Engineer in Charge according to the highest pressure during operation or testing of the pipes, the safe bearing pressure of the surrounding soil and the friction coefficient of the soil.

Sectional tests:- After laying and jointing the pipeline shall be tested for tightness of barrels and joints, and stability of thrust blocks in sections approved by the Engineer in Charge as per IS Code.

Executive Engineer (Garden-I)

JDA, Jaipur

I/we confirm above

Signature of contractor

JAIPUR DEVELOPMENT AUTHORITY, JAIPUR

Name of work :- Improvement work in jaldhara JLN Marg, JDA, Jaipur.

Factor for Price Escalation

Labour (P_I)	16.52%
Cement (Pc)	5.42%
Steel (Ps)	6.62%
Bitumen - (Pb)	0.00%
POL-P	1 05%

Total 100.00%

70.39%

J.É.N. JDA,Jaipu

Other materials (Pm)

A,Ĕ.N. \ JDA,Jaipu Executive Engineer
JDA.Jaipur

Supdt, Engineer JDA Jaipur